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Abstract

We analyze the mechanisms underlying the deformation of nanovoids in Ta sin-
gle crystals subjected to cyclic uniaxial deformation using numerical simulations.
Boundary and cell-size effects have been mitigated by means of the Quasicontin-
uum (QC) method. We have considered ~1 billion-atom systems containing 11.2-
nm voids. Two kinds of simulations have been performed, each characterized by a
different boundary condition. First, we compress the material along the nominal
[001] direction, resulting in a highly-symmetric configuration that results in high
stresses. Second, we load the material along the high-index [4 8 19] direction to
confine plasticity to a single slip system and break the symmetry. We find that
the plastic response under these two conditions is strikingly different, the former
governed by dislocation loop emission and dipole formation, while the latter is dom-
inated by twinning. We calculate the irreversible plastic work budget derived from a
loading-unloading cycle and identify the most relevant yield points. These calcula-
tions represent the first fully 3D, fully non-local simulations of any bce metal using

QC.

Key words: Nanovoid collapse, Quasicontinumm method, shocks, strength of Ta
PACS: 02.70.-c, 02.70.Uu, 61.72.Ss

1 Introduction

Understanding materials response to dynamic loading requires knowledge of
the physical, mechanical and thermodynamic properties of materials over the
appropriate pressure range. The different thermodynamic states and associ-
ated phase transitions are characterized by the equation of state (EOS), which
may also give information about a wide range of mechanical states, including
elastic behavior, plastic flow, and failure. The high-pressure EOS of materials
is usually determined by shock compression experiments [1]. The data obtained
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from these experiments is then used to determine the pressure-volume-energy
end states due to each shock wave experiment. The locus of several of these
end states constitutes the so-called Hugoniot curve, which is a unique path on
the EOS surface. The Hugoniot represents an adiabatic compression process
by steady shock transitions to various final states, but it is highly irreversible,
resulting in higher temperatures in the shocked state. In contrast, the so-called
‘cold curve’ is the isotherm at 7' = 0, and represents the maximum theoretical
compression that can be achieved by shock loading. If the compression pro-
cess involves plasticity (hence no longer reversible), the cold curve then gives
the total plastic work produced by deviatoric stresses available for irreversible
heating. Therefore the cold curve is the reference from which temperature
changes are computed. It is difficult to obtain isentropic states experimen-
tally, and cold curves are usually estimated from theoretical Griineisen models
or other phenomenological approaches that include semiempirical information
2,3].

Researchers are now endowed with more powerful computational approaches
that can compute material properties with very few or no a prior: assumptions.
These methods, organized in hierarchical classifications (such as ‘multiscale’),
have been successfully tested for a number of pure systems, treating non-trivial
aspects such as magnetism, phase transitions, etc. (for comprehensive reviews
see, for example, Refs. [4,5]). However, modern engineering materials have
increasingly complex microstructures. When subjected to extreme environ-
ments, such as high strain rates or shock-loading, understanding the response
of the complex microstructures is key to modeling them. Specific features of
these microstructures that may be relevent to their response include charac-
teristics such as porosity that is found in any powder metallurgy material [6,7],
small voids or gas bubbles in irradiated materials [8], and the multiple phases
that are found in composite materials [9]. The interaction among the phases,
particularly during mechanical loading, can be complex and can give rise to
unexpected responses. Efforts to properly model these systems are contingent
on the calculation of accurate cold curves and the understanding of the related
deformation processes. Therefore, in this work we use numerical simulations
of uniaxially-loaded porous Ta as a model system to compute the associated
cold curves and identify the unit mechanisms attendant to shock compression
of these materials with complex microstructures.

The high experimental strain rates commonly reported for shock-loading ex-
periments in metals —of the order of 10% to 10° s~!-— make atomistic tech-
niques such as molecular dynamics (MD) ideally suited for the study of these
processes [10-12]. However, the simulation of localized plastic phenomena in
heterogeneous systems requires the use of very large systems and appropriate
boundary conditions, which may result in system sizes difficult to access us-
ing direct MD. The Quasicontinuum method (QC) suggests itself as a viable
alternative to fully atomistic methods, as it permits the treatment of long-



ranged fields in a computationally efficient manner while resolving non-linear
regions of the configuration space atomistically. The main shortcoming of QC
is that it is a quasistatic technique and, as such, can only provide equilibrium
configurations. However, quasistatic studies may also be helpful in studying
the deformation pathways attendant to void collapse in Ta, as it has been
the case in a number of other problems with similar geometric constrains to
which QC has been successfully applied [13-15]. In addition, most atomistic
studies have been carried out for <5-nm voids in fcc crystals under expansive
conditions [14,16-19], with only a few focusing on void collapse [20-22]. Thus,
despite the many benefits of MD, such as full spatial and temporal resolution,
and the volume of work on small void compression, here we present results of
~11-nm void collapse in Ta obtained using QC. This represents three elements
that are explored here for the first time using Quasicontinuum: relatively large
(>10-nm) voids, bee crystals, and compressive loading.

2 Methodology

2.1 The Quasicontinuum method

QC is a method for systematically coarse-graining lattice statics models [23,24].
The method starts with the complete atomistic system and reduces the con-
figuration space of the crystal through judicious application of finite-element-
based kinematic constraints. In order to avoid full lattice sums, cluster sum-
mation rules are used. By virtue of these rules, only atoms in small clusters
surrounding the representative atoms need be visited in computing the ef-
fective out-of-balance forces. Finally, the selection of representative atoms is
performed adaptively based on a local strain measure and longest-edge tetra-
hedral bisection. The tolerances governing the adaption process are set such
that full atomistic resolution is attained in the presence of dislocations. The
QC method uses empirical potentials directly as the sole description of mate-
rial behavior and contains fully atomistic lattice statics and continuum elas-
ticity as special limits. As in conventional continuum mechanics, QC permits
the direct simulation of systems controlled through the application of remote
boundary conditions, a feature that is particularly useful in simulating dilute
distributions of nanovoids. QC simultaneously provides atomistic resolution at
defect cores without the stringent size limitations of direct atomistics. Details
of the implementation of QC used in the present study and an analysis of the
accuracy and convergence of the method may be found in [25]. For this work,
an embedded-atom method (EAM) potential for Ta has been implemented
[26] in QC. More details about the methodology and the potentials employed
can be found in Section 4.



2.2  Simulation details

We study the response of Ta single crystal samples containing nano-sized voids
to strong unidirectional shocks. We specifically consider two different loading
orientations:

(i)

Uniazial compression along [001].

This involves loading a perfectly-spherical void along one of the principal
axes of the cubic sample. Macroscopically, this deformation is characterized
by the following (homogeneous) deformation gradient F':

1 00
F=10 10
0 0 v

where v > 0 is the prescribed macroscopic compression at each loading step.
We define the accumulated axial strain as e, = 3[(1 — v)*" — 1], where n is
the total number of loading steps. Here we have decreased + from 1.0 to 0.9

in decrements of half of a percentage point, i.e. n &~ 20.

Compression along [4 8 19].

We have found a loading direction such that the difference in resolved shear
stress (RSS) between the two most-highly-stressed slip systems is maxi-
mized. This is termed the maximum RSS margin orientation, and e.g. for
slip on [111](101) it lies close to the [4 8 19] slip direction. The primary
[111](101) slip system then has a stress ~13% higher than the next most
highly activated system. In order to use the same crystallographic orienta-
tion as case (i), we have rotated a stress tensor with only one active diagonal
component along the [4 8 19] direction, o, to the canonical frame of refer-
ence. In Appendix A we derive the corresponding deformation gradient, F’,
in terms of the uniaxial stress o,. From eq. A.8, values of 0 < 0, < 723.3
GPa guarantee macroscopic compression, i.e. J = det F' = V/V<1, where
J is the Jacobian, and V' and V| are, respectively, the current and reference
total volumes (discounting the void volume). Here we have varied o, from
0 to 11 GPa in 1.0-GPa increments.

Figure 1 shows these two crystallographic orientations represented in the stere-
ographic triangle of the corresponding cartesian octant.

Another principal outcome of the calculations is the plastic work budget and
degree of hysteresis associated with nanovoid collapse. In order to ascertain
these aspects of the macroscopic behavior of the material we proceed to cal-
culate the recovery curve resulting from the unloading and reverse-loading of
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Fig. 1. Stereographic triangle in the (z<0; y,2>0) octant containig the two axial
loading orientations considered in this work (red diamonds).

the sample back to its initial macroscopic configuration. In case (i), we induce
this unloading by restoring v to 100% following the attainment of its mini-
mum prescribed value of 90%. For case (ii), we simply decrease o, from its
maximum accumulated value of 11 GPa to zero.

At each loading step, a new stable equilibrium configuration is obtained by
means of the Polak-Ribiere variant of the conjugate gradient algorithm [27].
The computational mesh is then adapted so as to adequately resolve the fine
features of the solution. The precise adaption indicator employed in the cal-
culations reported here is as follows. Suppose that F is the local deformation
gradient of a tetrahedron K in the computational mesh. The departure of that
local deformation F from the macroscopic deformation F}, is F; = FF;,~!. We
flag K for refinement when the norm of the second invariant of the correspond-
ing Lagrangian strain E; = %(FiTFZ- —1I) exceeds a pre-specified tolerance. This
tolerance is chosen such as to ensure full atomistic resolution well in advance
of the passage of dislocations.

The computational cell used for the simulations is a 0.26-pum cube of bee
Ta containing 796ay X 796ay x 796a¢ unit cells (g = 3.3026 A), or a total
of 9.08 x 10® atoms. The cell is oriented along the cubic lattice directions.
An equiaxed 10.9-nm void is initially introduced at the center of the cell,
corresponding to a porosity of ~ 3.73 x 107°. The initial triangulation of
the cube is tailored to the problem geometry. In particular, full atomistic
resolution is introduced in a 30ag X 30ay x 30aq region around the void from
the outset. Away from this region, the triangulation is gradually coarsened.
The resulting initial number of nodes, or representative atoms, in the mesh is



104, 987, which represents a reduction of almost four orders of magnitude in
problem size with respect to full atomistics.

2.3  Analysis of the results

The computed EOS are given as pressure vs relative volume change (Jacobian).
The pressure is calculated as:

pzézaaa (1)

where o, are the diagonal components of the Cauchy stress tensor. Zhou has
shown that, when averaged over (microscopically) large volumes, the Cauchy
stress can be obtained directly from the volume-averaged Virial expression
28]
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where Vi is the volume of element K, €2; is the atomic volume of bce Ta,
7@ is the a-th component of the position of atom i€V, and fﬁ(”) is the (-th
component of the force between atoms ¢ and j. The summation in eq. 2a runs
over all elements of the system triangulation 7, whereas those in eq. 2b en-
compass, respectively, all atoms in each Vi and their neighbors. The Jacobian

is simply computed as the determinant of the deformation gradient:

J = Z =detF = Lxer, Vi

——— 3
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where Vi is the volume of each element in the reference configuration.

In order to reliably identify the defects in the deformed crystal we employ
the centrosymmetry deviation parameter (CSD) [29]. For a dislocation core
atom in Ta the deviation parameter is between 1.2 and 3.5 A2, between 3.5
and 9.0 A% for an atom belonging to a twin plate, and 27.0 and 15.4 A2
for, respectively, {001} and {110} free surfaces. In all subsequent dislocation
structure plots, atoms are colored according to the relative magnitude of their
centrosymmetry deviation parameter with green/yellow corresponding to free
surfaces and red to dislocation cores, while atoms belonging to a twin are
identified by means of an orange-to-red color gradation. Once the dislocation
lines are identified, the Burgers vectors can be readily determined by perform-
ing a Burgers circuit around the dislocation core. Finally, the edge and screw



components of the dislocation can be resolved by resorting to the following
pair of simple expressions:

be = ¢ x (b x¢) (4b)

where b is the total Burgers vector and ¢ is a unit vector tangent to the
dislocation line.

3 Results

Case (i) above involves loading a perfectly-spherical void along one of the
principal axes of a cubic sample. These highly-symmetric conditions are not
representative of real crystals, although they are a framework to provide an
upper estimate of the strength of these voids to uniaxial loading. Case (ii)
serves to break this symmetry while maintaining the uniaxial nature of the
deformation. It also facilitates the analysis by confining plasticity to one single
specific slip system. In the following we provide the results for each case.

3.1  Uniazial loading along [001]

The computed EOS (p-J) for the [001] loading direction is plotted in Fig. 2.
Both the loading and the recovery paths are shown in the figure. The loading
curve is characterized by an initial (non-linear) elastic stage up to J & 0.922,
followed by yielding all the way up to the maximum compression of J =
0.909. Plastic yielding is a rich process, involving several dislocation emission
episodes, and manifests itself as a gradual leveling off of the loading path. The
loading curve essentially follows the uniaxial bulk elastic behavior that gives
the Young modulus as a function of compression. Interestingly, the difference
between the two is minimal despite the presence of dislocations that give
rise to irreversible plastic work. Indeed, the material heterogeneity associated
with this low porosity becomes diluted by the surrounding elastic matrix and
its ‘macroscopic’ effect is minimal. The first yield point occurs at a critical
pressure of p = 12.8 GPa (J = 0.922) and is characterized by the emission on
the equatorial plane of an edge dislocation ring with Burgers vector a([001].
The formation of this type of loops is not favored elastically in bce crystals
although they have been seen to appear ubiquitously under certain conditions
[30]. Figure 3(a) shows the resulting atomistic structure surrounding the void’s
equator ([001] plane). The state of the QC mesh at this stage is shown in Figure
3(b), where the deformation associated with the loop is clearly visible. This
dislocation loop is prismatic and therefore glissile on the glide prism defined
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Fig. 2. EOS for [001] loading. Both the loading and reverse loading paths are shown.
Both curves virtually lie on top of one another. Points labeled as ‘(1)’, ¢(2)” and ‘(3)’
mark, respectively, the first yield point, the point of maximum deformation and the
final stress-recovered state.

by the loading direction (axis) and (100) and (010) planes (prism sides: note
its square shape)!. However, this loop does not have any stress acting on it
and hence it does not move. In addition, the critical glide stress for (001)-
type loops is typically quite high and in many instances these loops can be
considered immobile for all practical purposes [30].

It is precisely this inability to further relieve the applied stress what trig-
gers the nucleation of dislocation loops with %[111] Burgers vector gliding
on (101) planes (their precursors can be appreciated in the lower left corner
of Fig. 3(a)). This occurs at p ~ 13.3 GPa or J = 0.913 and the resulting
atomistic structures are shown in Figure 4(a). While in two of the equatorial
quadrants (the upper ones in Figs. 3(a) and 4(a)) there is no additional dis-
location activity beyond that seen at the first yield point, in the other ones
long dislocation segments are seen to propagate away from the void. These
segments are perfect screw in character and display reduced mobility, possibly
due to Peierls friction effects (of the order of ~0.8 GPa [31,32]). However, the
leading part of the loops is almost pure edge in character and moves smoothly
along its glide prism, pulling and lengthening the screw segments with them.

I The glide prism is defined as the locus of the crystallographic planes where b-n =
0.



(a) Atomistic representation of the void
and its vicinity viewed along the loading
direction. The equatorial, a((001) square
loop can can be clearly observed. On the
bottom-left part of the image, precursors
of £(111) loops have already emerged.

(b) Displacement map superposed on the
QC mesh. The horizontal direction coin-
cides with the loading direction.

Fig. 3. View of the void at the the first yield point (p = 12.8 GPa), corresponding
to the point labeled ‘(1)’ in Fig. 2.



This results in the effective formation of screw dislocation dipoles closed, on
one side, by the void surface and, on the other, by this edge-type dislocation
segment.

In principle, with this geometry all slip systems of the (111){101} type are
equally stressed with Schmidt factor Lg Therefore, the reason why only two
of them are seen to become activated must be related to some symmetry-
breaking local perturbation. For example, flipping tetrahedral edges during
the remeshing phase of QC (Delaunay triangulation construction) is subject
to some numerical variability that may give rise to different results in identical
conditions. Despite the numeric, rather than ‘natural’, character of these fluc-
tuations, these may serve to enrich the statistics of the simulations and lower
the values of p required to make the system yield. Regardless, plasticity for this
loading orientation is characterized by the emission of leading edge dislocation
segments that result in the creation of long screw dislocation dipoles.

The area enclosed between the direct and reverse loading paths represents
the plastic work available for thermal heating. For the reasons discussed in
Section 2.3, the volume-averaging procedure to compute p prevents the ob-
servation of any appreciable hysteresis throughout the complete deformation
cycle, resulting in both curves (loading and unloading) lying virtually on top
of one another. An alternative way to estimate the degree of irreversibility of
this process is by obtaining the number and configuration of dislocations and
other plastic structures at the end of the unloading phase.

3.2 Uniazial loading along [4 8 19]

Figure 6 shows the EOS for this loading direction and the associated unloading
path. Initially, the EOS increases smoothly following the elastic response as
given by the interatomic potential. The system yields at approximately 4.7
GPa, mainly by way of dislocation emission and twinning. Although the EOS
suffers a slight leveling thereafter, as in the previous case, these plastic events
do not manifest themselves as a sharp yield point drop in Fig. 6. Rather, the
EOS behaves very much like in real macroscopic materials, where microscopic
plastic activity becomes diluted in the overall materials response. As the figure
shows, this loading mode is practically isochoric, indicating that volumetric
effects are small compared to shear effects, with volume changes of slightly
over 2% in compression after 11 GPa of applied axial stress.

The most salient plastic feature in this case is the formation of (101)[111] twin
plates on the planes of maximum RSS. The mechanism for twinning initiation
has been postulated by Lagerlof [33], and shown in detailed atomistic simula-
tions by Marian et al. [34]. In essence, dipoles of twinning partial dislocations

10



(a) Atomistic representation of the void and its
vicinity viewed along the loading direction. Long
screw segments can be clearly observed in the
lower part of the image, pulled by edge-type seg-
ments.

(b) Displacement map superposed on the QC mesh.
The horizontal direction coincides with the loading
direction.

Fig. 4. View of the void at the point of maximum deformation (p = 13.3 GPa),
corresponding to the point labeled ‘(2)’ in Fig. 2.
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(a) Atomistic representation of the void and its
vicinity viewed along the loading direction. Rem-
nant dislocations can be clearly appreciated.

(b) Displacement map superposed on the QC mesh.
The horizontal direction coincides with the loading
direction.

Fig. 5. View of the void after full unloading, corresponding to the point labeled ‘(3)’
in Fig. 2.
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Fig. 6. EOS for [4 8 19] loading. The unloading path is also shown, down to nega-
tive (expansive) pressures. Both curves virtually lie on top of one another. Points
labeled ¢(0)’, ‘(1)’, ‘(2)" and ‘(3)’ mark, respectively, a state representative of the
elastic regime, the first yield point, the point of maximum deformation and the final
deformation-recovered state.

(with b = £(111)) are nucleated on {111} planes at the points of maximum
RSS forming £45° with the loading direction. These twins are accompanied
by some dislocation activity on planes perpendicular to the activated (101).
The twin plates keep growing with deformation, both in thickness and in ex-
tent, all the way up to the maximum calculated pressure of p = 5.4 GPa. In
contrast, the dislocation loops lying on perpendicular planes move scarcely.
Figures 7(a) and 8(a) show the extent of the QC mesh superposed on the
deviatoric displacement field for p = 3.4 (elastic regime) and 5.4 GPa (max-
imum deformation) on the loading The figures clearly show the intensity of
the deformation and how the QC solution adapts itself to it. In particular,
the two twin plates that emanate from the void can be clearly appreciated
in Fig. 8(a), as discontinuities in the strain field. The intense displacement
band joining both twins is also clearly visible on the inner surface of the void,
along an equatorial arc. To better interpret these features we analyze the QC
meshes in terms of the corresponding atomic structures using the CSD param-
eter. At any given moment, QC permits the direct correspondence between
the atomistic and mesh representations by recourse to interpolation functions
that provide the atomic positions in large elements [25]. Figures 7(b) and 8(b)
show, respectively, the onset of twinning at p = 4.7 GPa, and the maximum
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(b)

Fig. 7. (a) Cross section of the void showing the displacement field mapped against
the QC mesh for p = 3.4 GPa, while the system still behaves elastically. This cor-
responds to point (0)’ in Fig. 6. (b) Atomistic representation of the void and its
vicinity immediately after the onset of twinning, at a pressure of 4.7 GPa, corre-
sponding to the point labeled ‘(1)” in Fig. 6.. The twin plates on (110) planes can
be clearly observed together with several dislocation lines on planes orthogonal to
them. An isolated vacancy has appeared next to the lower twin plate.
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extent of the twin plates and accompanying dislocation structures at

The stress recovery curve is also shown in Fig. 6, ranging from J = 0.979
(maximum compression) to J = 1.002. As the unloading proceeds, the twin
plates are gradually reabsorbed into the void and seen to fully disappear at
J = 1.000 deformation. This process is governed mainly by the extent of the
twin plates and their distance to the void surface, which in turn determines the
magnitude of the image forces. This is clearly shown in Figure 9(a), showing
the QC mesh near the end of the recovery phase, where the twin plates have
been completely reabsorbed. This behavior is consistent with the loading and
unloading curves lying virtually on top of one another down to J = 0.996, al-
though, again, the volume-averaging procedure employed to compute p masks
the relative differences between the loading and reverse loading paths.

However, screw segments belonging to the dislocation lines present after load-
ing are able to irreversible cross-slip and create cross-kinks, resulting in the
formation of isolated vacancies (see Ref. [34] for the mechanism). These struc-
tures end up on planes that may not directly intersect the void surface and,
therefore, survive absorption and remain mostly unaltered. These residual
dislocation structures can be seen in Fig. 9(b), where undetached loops with
$[111] Burgers vector and several vacancies (identifiable by their eight first
nearest neighbors in the bcee lattice) are clearly visible. Notably, this irre-
versibility is clearly manifested in the (p-J) EOS, where an appreciable devi-
ation from the original elastic behavior can be seen in the 0.996 < J < 1.000
range.

4 Discussion and conclusions

A principal conclusion of these simulations is that plastic effects due to nano-
sized heterogeneities in ‘macroscopic’ systems become completely subdued by
the overall elastic behavior of the matrix. In particular, plastic nucleation
events and plastic flow do not manifest themselves in the EOS in the form
of appreciable yield points or noticeable deviations from the overall elastic
response. In this sense, MD simulations may not be sufficient to provide accu-
rate macroscopic constitutive relations despite producing the correct plastic
features. QC calculations may, on the other hand, capture correctly these
effects by minimizing finite-size effects, although limited to quasi-static con-
ditions. In situations where this limitation is well justified —a case in point
being the calculation of cold curves— QC can be reliably used to study the
elastic behavior and incipient plasticity.

Another important conclusion is that the available plastic work for irreversible
heating cannot be obtained directly from these calculations, at least not in

15



(a) Displacement map superposed on the QC
mesh. Two antisymmetric discontinuities, at the
top and bottom poles of the void, can be clearly
appreciated, signaling the existence of twin plates.
Note the extent of the mesh with respect to
Fig. 7(a).

(b) Atomistic representation of the void and its
vicinity. The twin plates grow gradually from the
continuous nucleation of twinning partials on their
surface.

Fig. 8. View of the void immediately at the maximum pressure of 5.4 GPa, corre-
sponding to the point labeled ‘(2)’ in Fig. 6.
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(a) Displacement map superposed on the QC
mesh. The twin plates have been completely reab-
sorbed but the equatorial deformation band still
remains.

(b) Atomistic representation of the void and its
vicinity. The only plastic features remaining are
%(111) dislocations, corresponding to the equatorial
band appearing in the mesh representation. Several
isolated vacancies, the traces of cross-slip events,
are also visible

Fig. 9. View of the void during the recovery phase at p ~ —0.5 GPa, corresponding
to the point labeled ‘(3)’ in Fig. 6.
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these relatively large systems with such low porosities. Moreover, it has been
suggested that the Taylor-Quinney coefficient [35], which dictates the fraction
of plastic work that is converted into heat, vanishes under extreme conditions
of strain rate and temperature (expected under shock loading) [36]. However,
these results can be helpful if thought of as links in a multiscale chain that
informs methods with a higher degree of homogenization. For example, the
computed EOS can be used as the base constitutive relation in finite-element
simulations of shocked porous Ta.

With regard to the methodology employed, we have discussed the advantages
and shortcomings of QC in Sections 2 and 3 at length. We have used displace-
ment boundary conditions for our simulations as most experimental tests are
performed in that manner. A critical issue is the absence of natural symmetry-
breaking perturbations in our calculations, which give rise to relatively large
pressures. However, to the extent of our capabilities, we have changed the sim-
ulation conditions so as to induce deviations from the ideal behavior a priori
considered in Section 3.1. We have seen that the plastic behavior attendant to
void collapse under the different conditions explored in Sections 3.1 and 3.2 is
radically different, in one case being characterized by screw dislocation dipole
formation, while, in the other, by twin plate emission.

As to the interatomic potentials, typically, due to their ease of implementa-
tion and relatively low computational overhead, EAM potentials [37] have been
used within the QC framework. Although inaccuracies have been reported for
EAM calculations of some crystal defects [38,39], this class of potentials has
proven sufficiently accurate for a wide range of applications. Recently, QC ap-
proaches that use first-principles as the underlying material model have been
developed [40]. These methods appear very promising, although for now they
are formulated on the basis of orbital-free density functional theory for the
sake of computational expeditiousness. An intermediate solution may be using
potentials where multi-ion angular forces are taken into account [41,42]. This
class of potentials has been successful in calculating a wide range of structural,
thermodynamic, defect, and mechanical properties at both ambient and ex-
treme conditions. However, they are still about an order of magnitude costlier
than standard EAM. Our potential of choice [26] has been fitted to an exper-
imental equation of state for bee Ta that includes data at 10% compression.
This is a particular useful feature for our calculations and an advantage over
other central potentials for Ta found in the literature. In addition, a modifi-
cation of this potential to more extended ranges has been shown to predict
accurate dislocation properties [43].

In terms of validation, there is ample experimental evidence of twinning in
shocked Ta [44-48], and under other loading conditions [49,50]. These works
demonstrate, first, that twinning is normally initiated at material inhomo-
geneities, and, second, that twinning is generally accompanied by a significant
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amount of dislocation activity. In addition, there is experimental evidence for
the formation of microstructures aligned with the activated slip planes when
materials are loaded along directions in the middle of the stereographic tri-
angle [51]. From a computational standpoint, there have been several works
highlighting the twinning proclivity of Ta-based materials. For example, Zhou
et al. have shown using MD that twins nucleate at interfaces in lamellar TiAl
crystals by agglomeration of twinning partials [52]. Additional MD simulations
of Ta single crystals suggest a strain-rate dependent transition from disloca-
tion to twinning-governed plasticity [53]. Therefore our results are well within
the expected behavior for Ta-based systems under rapid deformation rates.

Future work will be focused on two general issues: (i) populating the stereo-
graphic triangle with more loading directions, and (ii) studying the behavior of
interacting voids in systems with higher porosities. These two are symmetry-
breaking operations which will contribute to enrich the statistical meaning-
fulness of the calculations. Symmetry can be broken in various other ways,
such as having non-spherical voids, mixed loading, thermal fluctuations, etc.,
which are worth being explored as well.

Acknowledgments

Useful discussions with R. C. Becker and J. S. Stolken are gratefully ac-
knowledged. This work performed within LDRD project 06-SI-005 under the
auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07TNA27344.

Appendix

A Tensor rotation for uniaxial loading from [4 8 19] to [001]

We start from the preferred loading direction:
e; = [4 8 19]

For convenience, we choose:
e =1[210]
and,

e; = ey X e3 = [19 38 4]
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In the above frame, the second Piola-Kirchhoff stress tensor is:

0 0 O
S=10 0 0 (A.1)
0 0 S,

Now, we want to rotate this tensor to the frame associated with the set of vec-
tors €] = [100], €}, = [010], €5 = [001]. The components of the transformation
matrix Q are:

e;e
Qi = ——L— (A.2)
T leilllel
From here, we have that the rotated tensor, S', is:
S'=Q'sqQ (A.3)

For QC, we need to obtain the deformation gradient F’ associated with S'.
For first-order hyper-elasticity [?], we have

S=C:E, (A.4)

where C denotes the fourth-rank elasticity tensor and E = £(FTF — I is the
Green-Lagrange strain tensor. For simple crystals, relationship (A.4) can be
simplified by recourse to the Voigt rule

Su| [cnCecin 0 0 o[ E]

Sao CoC1 Ciza 0 0 O Es

Sas _ CoCi2C;p 0 0 O Es3 ‘ (A5)
So3 0 0 0 Cy O O 2F53

S13 0O 0 0 0 Cyu O 2F3

Sl L0 0 0 0 0 Cul |28

The elastic constants correspond to the Ta EAM potential [26] and are equal
to C11 = 248.5 MPa, C15 = 144.6 MPa, and Cy = 86.5 MPa. Starting with S’
and inverting the relation (A.5) we obtain the associated Ej;. Subsequently,
assuming F' = F'7, i.e. no rigid rotations, F/ can be computed directly from
E’. The calculation yields let’s check the calculation

(1—0.00225,) —0.0008S,  —0.00208,
F'=| —0.0008S, (1—0.00125,) —0.0040S, (A.6)
—0.0020S,  —0.0040S, (1 — 0.00535.)
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The condition for compression is J = det F/ < 1:
det F/ = 1 — 0.00875, +2.0012 x 107852 4+ 1.6601 x 10785% <1 (A.7)
which amounts to solving the following quadratic inequality:
—0.0087 +2.0012 x 10735, 4+ 1.6601 x 107852 < 0

whose two roots are —724.5 and 723.3 GPa. In other words, the two S, ranges
where compression is guaranteed are:

S, < —724.5 GPa
0<J<1 (A.8)

0< S, <7233 GPa
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